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Abstract

An exact two-dimensional (2D) piezoelasticity solution is presented for free vibration and steady-state forced response of

simply supported piezoelectric angle-ply laminated circular cylindrical panels in cylindrical bending under harmonic

electromechanical load, with and without damping. The piezoelectric layers are polarized along radial direction to induce

extension actuation/sensing mechanism. The variables are expanded layerwise in Fourier series to satisfy the boundary

conditions at the simply supported ends. The governing equations get reduced to ordinary differential equations in

thickness direction with variable coefficients and these are solved by the modified Frobenius method. The unknown

coefficients of the solution are obtained using the transfer matrix method. Results for the natural frequency and its

variation with ply angle and for steady-state response due to harmonic electromechanical excitation are presented for

single layer piezoelectric panel, and hybrid multilayered inhomogeneous test, composite and sandwich panels. The

numerical results presented in tabular form would serve as useful benchmark for assessing one-dimensional (1D) panel

theories for free vibration and harmonic response of hybrid cylindrical panels.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The development of light weight smart plate/shell type structures made up of advanced composite and
sandwich materials with distributed piezoelectric sensor and actuator layers surface bonded or embedded in it
has great potential for use in the new generation of aerospace, automobile, ship and space structural
applications. Exact analytical solutions of coupled field equations of three-dimensional (3D) piezoelasticity
with the exact satisfaction of the boundary and interface conditions of such so-called hybrid laminated
structures are immensely useful for assessing the accuracy of the two-dimensional (2D) plate and shell theories
and one-dimensional (1D) beam theories that are developed for efficient analysis of these structures. This need
has led to the development of a number of exact 3D piezoelasticity solutions for hybrid plates and shells of
various geometries under different loading conditions [1]. Exact 3D piezoelasticity solutions for simply
supported rectangular cross-ply hybrid piezoelectric plates have been developed for static electromechanical
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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[2,3], static thermal [4,5], free vibration [6], forced vibration [7] and buckling [8] response. Exact 2D solutions
for the generalized plane strain problems of piezoelectric and magnetoelastic angle-ply flat panels in cylindrical
bending have been presented for static electrothermomechanical response [9] and steady-state forced harmonic
response [10]. For these laminates, the governing equations for each layer are reduced to a set of ordinary
differential equations (ODEs) in the thickness coordinate with constant coefficients, which are solved
analytically.

Exact piezoelasticity [11] and piezothermoelasticity [12] solutions for static response of simply supported
infinite cross-ply piezoelectric circular cylindrical panels have been presented, wherein the governing equations
are reduced to a set of second-order ODEs of Euler–Cauchy type, which are solved exactly. Exact
piezoelasticity solutions for static [13] and free vibration [14] response of axially polarized transversely
isotropic piezoelastic finite-length circular cylindrical shells have been obtained by using potential function
method and expressing the solution in terms of Bessel functions. For simply supported finite-length cross-ply
cylindrical shells and angle-ply infinite cylindrical panels, the governing equations of piezoelasticity reduce to
first-order ODEs of variable coefficients, which pose difficulty in obtaining an exact analytical solution. Chen
and Shen [15,16] employed power series method to obtain the 3D piezoelasticity solution for static
axisymmetric and free vibration response of hybrid circular cylindrical shells. In both cases, however, the
piezoelectric constants considered for radial poling direction are inconsistent with the elastic constants.
Kapuria et al. [17,18], and Xu and Noor [19] presented 3D piezothermoelasticity solutions for static response
of cross-ply finite circular cylindrical shells and panels using an elegant modified Frobenius method which
yields faster convergence compared to the conventional Frobenius and power series methods. A similar
solution for the static electrothermomechanical response of simply supported angle-ply hybrid cylindrical
panels in cylindrical bending has been presented by Dumir et al. [20]. Chen and Lee [21] have presented an
approximate analytical 2D solution for static and free vibration response of elastic angle-ply laminated
cylindrical panels by employing a layerwise method. In this method, each layer of the laminate is divided into a
number of sublayers and variable coefficients of the governing differential equations are approximated to be
constants with their values corresponding to the middle surface of the sublayer. The same method was applied
for the 3D piezoelasticity solution of cross-ply hybrid finite circular cylindrical panels [22], but the
piezoelectric layers are considered to be axially polarized giving rise to the shear actuation mechanism
(d24 effect) and not the extension actuation mechanism (d31=d32) effect, that is required for effective actuation
and sensing in structural applications. No results were presented for response due to electric potential load.
Ootao and Tanigawa [23] obtained the quasi-static piezothermoelastic response under transient thermal
loading for simply supported angle-ply hybrid radially polarized circular cylindrical panels in cylindrical
bending. They reduced the governing ODEs with variable coefficients to those with constant coefficients by
employing the variable substitution method. A similar method was adopted by Chen and Lee [24] to obtain
the static electromechanical response of simply supported infinite-length angle-ply hybrid shells featuring
weak interfaces, for which no results were presented for the electric potential loading case. The variable
substitution method, however, does not lead to constant coefficients in ODEs for the dynamic case. To the
best of the authors’ knowledge, no exact analytical solution exists for the free and forced vibration response of
angle-ply hybrid radially polarized piezoelectric cylindrical panels. The present work is aimed to fill up this
void in the literature.

The objective herein is to present analytical exact 2D piezoelasticity solutions for free vibration response
and steady-state harmonic response of simply supported hybrid radially polarized piezoelectric angle-ply
cylindrical panels under electromechanical excitation with damping. The basic entities in this generalized plane
strain problem for each layer are expanded in Fourier series in the span coordinate to satisfy the boundary
conditions at the simply supported ends. The governing equations reduce to first-order ODEs with variable
coefficients in the thickness coordinate. These are solved by the modified Frobenius method, wherein the
solution is constructed as a product of an exponential function and a power series. The momentum and charge
balance equations yield a linear eigenvalue problem for the exponent of the exponential term with eight
eigenvalues and eigenvectors and a recursive relation for the coefficients of the power series. The general
solution for each layer is expressed in terms of the values of the eight primary variables at the bottom of the
layer. Using the continuity conditions at the layer interfaces, a laminate transfer matrix is built which relates
the eight primary variables at the top and bottom surfaces. These are finally computed from the boundary
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conditions at the top and bottom. Since piezoelasticity equations are used, the exact solutions presented are
valid for shallow and deep shell panels. Benchmark results are presented for natural frequency and steady-
state harmonic response of single layer piezoelectric panel and multilayered angle-ply piezoelectric test,
composite and sandwich cylindrical panels.

2. Governing equations

Consider an infinitely long, simply supported, angle-ply laminated hybrid circular cylindrical panel (Fig. 1)
with span angle c along the circumferential direction y, thickness h in the radial direction r, made up of L

perfectly bonded layers. The panel is subjected to electromechanical harmonic load which is independent of
the axial coordinate z. The layers can be orthotropic elastic with a principal material axis along the radial
direction or piezoelectric with orthorhombic class mm2 symmetry with poling in the direction of principal
material axis in the radial direction. The mean radius of the panel is R and its inner and outer radii are
Ri;Ro ¼ R� h=2, respectively. Let the thickness and the inner radius of the kth layer (numbered from inside)
be tðkÞ and R

ðkÞ
1 . Let the angle made by its fiber axis with the y-axis in yz plane be bðkÞ. The interface between the

kth and ðk þ 1Þth layers is named as the kth interface with r ¼ R
ðkþ1Þ
1 . Henceforth the layer superscript is

omitted for clarity unless needed. The simple supports at y ¼ 0;c are electrically grounded and are modeled
such that the supports prevent only the radial displacement u, i.e. the tractions along directions y and z are
zero. The displacements v;w; u are taken in y; z; r coordinate directions. All response entities, namely,
displacements v;w; u; electric displacements Dy;Dz;Dr; electric potential f; electric field Ey;Ez;Er; strains
ey; ez; er; gzr; gry; gyz; and stresses sy; sz;sr; tzr; try; tyz, are independent of z.

The strain–displacement relations and the electric field-potential relations for this generalized plane strain
are given by

ey ¼ ðuþ v;yÞ=r; gzr ¼ w;r; Ey ¼ �f;y=r

ez ¼ 0; gry ¼ ðu;y � vÞ=rþ v;r; Ez ¼ 0

er ¼ u;r; gyz ¼ w;y=r; Er ¼ �f;r (1)

A subscript comma denotes differentiation with respect to a spatial coordinate. Using Eq. (1), the 3D
constitutive equations of the piezoelectric medium with principal material axis 1 at angle b to y-axis can
Fig. 1. Geometry of laminated hybrid cylindrical panel.
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be expressed as

ðuþ v;yÞ=r ¼ s̄11sy þ s̄12sz þ s̄13sr þ s̄16tyz � d̄31f;r (2)

0 ¼ s̄12sy þ s̄22sz þ s̄23sr þ s̄26tyz � d̄32f;r (3)

u;r ¼ s̄13sy þ s̄23sz þ s̄33sr þ s̄36tyz � d̄33f;r (4)

w;r ¼ s̄44tzr þ s̄45try � d̄14f;y=r (5)

ðu;y � vÞ=rþ v;r ¼ s̄45tzr þ s̄55try � d̄15f;y=r (6)

w;y=r ¼ s̄16sy þ s̄26sz þ s̄36sr þ s̄66tyz � d̄36f;r (7)

Dy ¼ d̄14tzr þ d̄15try � �̄11f;y=r (8)

Dz ¼ d̄24tzr þ d̄25try � �̄12f;y=r (9)

Dr ¼ d̄31sy þ d̄32sz þ d̄33sr þ d̄36tyz � �̄33f;r (10)

where s̄ij , d̄ ij and �̄ij are the elastic compliances, piezoelectric strain coefficients and the dielectric constants,
transformed into the structural coordinate system y; z; r. The equations of momentum and charge balance,
without body force and charge source, are

try;r þ sy;y=rþ 2try=r ¼ r€v (11)

tzr;r þ tyz;y=rþ tzr=r ¼ r €w (12)

sr;r þ try;y=rþ ðsr � syÞ=r ¼ r €u (13)

Dr;r þDr=rþDy;y=r ¼ 0 (14)

where an over-dot ð:Þ denotes differentiation with respect to time t.

3. Boundary and interface conditions

Dimensionless circumferential coordinate x and local thickness coordinate zk for the kth layer are
introduced as

x ¼ y=c; zðkÞ ¼ ðr� R
ðkÞ
1 Þ=tðkÞ with R

ðkÞ
1 ¼ R� h=2þ

Xk�1
i¼1

tðiÞ (15)

The coordinates x and zðkÞ take values 0, 1 at y ¼ 0;c and r ¼ R
ðkÞ
1 ;R

ðkÞ
1 þ tðkÞ, respectively. Let the prescribed

pressure and the electric potential f or the electric displacement Dr at the inner and outer surfaces of the panel
be p1ðx; tÞ;f1ðx; tÞ or D1ðx; tÞ and p2ðx; tÞ;f2ðx; tÞ or D2ðx; tÞ, respectively. A distributed viscous force is also
considered to act on the outer surface of the panel with the distributed damping coefficient cd per unit area per
unit radial velocity ð _uÞ. For actuation of embedded or surface bonded piezoelectric layers, let the number of
interfaces where the potential is prescribed be La with the qth prescribed potential being Fqðx; tÞ for the
interface nq. Thus the boundary conditions are

at x ¼ 0; 1 : u ¼ 0; sy ¼ 0; tyz ¼ 0; f ¼ 0 (16)

at r ¼ Ri : sr ¼ �p1; try ¼ 0; tzr ¼ 0; f ¼ f1 or Dr ¼ D1 (17)

at r ¼ Ro : sr ¼ �p2 � cd _uðx;R0; tÞ; try ¼ 0; tzr ¼ 0 f ¼ f2 or Dr ¼ D2 (18)
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The case of known prescribed electric potential f ¼ fi at a surface corresponds to the closed circuit electric
boundary condition and the case of known electric charge density, Dr ¼ Di, corresponds to the open circuit
(OC) condition. The conditions of continuity at the interface between the perfectly bonded adjacent layers are

½ðu; v;w; sr; tzr; try;f;DrÞjz¼1�
ðkÞ ¼ ½ðu; v;w;sr; tzr; try;f;DrÞjz¼0�

ðkþ1Þ (19)

for k ¼ 1; 2; . . . ;L� 1, except for Dr for the interfaces at k ¼ nq, q ¼ 1; . . . ;La, where the electric potential is
prescribed. For such surfaces, the continuity condition for Dr is to replaced by the following conditions:

½fjz¼1�
ðnqÞ ¼ Fqðx; tÞ for q ¼ 1; . . . ;La (20)

4. General solution

The steady-state solution is presented for forced vibration under harmonic electromechanical load of
forcing frequency o. The electromechanical loads are of separable form gðxÞ cosot ¼ Re½gðxÞeiot� as

fpi;fi;Di;Fqgðx; tÞ ¼ Re½fpi;fi;Di;FqgðxÞeiot� (21)

where Reð. . .Þ denotes the real part of the complex number ð. . .Þ. Let all the entities be expressed as
Re½f ðxÞeiot�, where f ðxÞ may be complex. The solution of the governing field equations for the kth layer,
satisfying the boundary conditions (16), is expanded in the following Fourier series:

ðu;sr;sy;sz; tyz;f;DrÞ ¼
X1
n¼1

Re½ðu;sr; sy; sz; tyz;f;DrÞne
iot� sin npx

ðv;w; tzr; try;Dy;DzÞ ¼
X1
n¼1

Re½ðv;w; tzr; try;Dy;DzÞne
iot� cos npx (22)

The electromechanical loading functions are similarly expanded as

ðpi;fi;Di;FqÞ ¼
X1
n¼1

Re½ðpi;fi;Di;FiÞne
iot� sin npx (23)

On substitution of expansions (22), the governing partial differential equations (2)–(14) reduce to the
following algebraic and ODEs:

ðun � n̄vnÞ=r ¼ s̄11syn
þ s̄12szn

þ s̄13srn
þ s̄16tyzn

� d̄31fn;r (24)

0 ¼ s̄12syn
þ s̄22szn

þ s̄23srn
þ s̄26tyzn

� d̄32fn;r (25)

un;r ¼ s̄13syn
þ s̄23szn

þ s̄33srn
þ s̄36tyzn

� d̄33fn;r (26)

wn;r ¼ s̄44tzrn
þ s̄45tryn

� n̄d̄14fn=r (27)

ðn̄un � vnÞ=rþ vn;r ¼ s̄45tzrn
þ s̄55tryn

� n̄d̄15fn=r (28)

�n̄wn=r ¼ s̄16syn
þ s̄26szn

þ s̄36srn
þ s̄66tyzn

� d̄36fn;r (29)

Dyn
¼ d̄14tzrn

þ d̄15tryn
� n̄�̄11fn=r (30)

Dzn
¼ d̄24tzrn

þ d̄25tryn
� n̄�̄12fn=r (31)

Drn
¼ d̄31syn

þ d̄32szn
þ d̄33srn

þ d̄36tyzn
� �̄33fn;r (32)

ðsrnÞ;r þ ð�n̄tryn
þ srn

� syn
Þ=r ¼ �ro2un (33)

ðtryn
Þ;r þ ðn̄syn

þ 2tryn
Þ=r ¼ �ro2vn (34)
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ðtzrn
Þ;r þ ðn̄tyzn

þ tzrn
Þ=r ¼ �ro2wn (35)

ðDrn
Þ;r þDrn

=r� n̄Dyn
=r ¼ 0 (36)

where n̄ ¼ np=c. These 13 governing equations are transformed into eight first-order ODEs in terms of eight
independent variables in X:

X ¼ ½vn wn un srn
tzrn

tryn
fn Drn

�T (37)

which appear in the boundary and interface conditions given by Eqs. (16)–(20) and five algebraic equations for
the remaining dependent variables syn

;szn
; tyzn

;Dyn
;Dzn

. Substituting fn;r from Eq. (32) into Eqs. (24), (25),
(29) and (26) yields

1

r

un � n̄vn

0

�n̄wn

run;r

2
66664

3
77775 ¼

s̄011 s̄012 s̄016

s̄012 s̄022 s̄026

s̄016 s̄026 s̄066

s̄013 s̄023 s̄036

2
66664

3
77775

syn

szn

tyzn

2
64

3
75þ

s̄013

s̄023

s̄036

s̄033

2
66664

3
77775srn
þ

d̄
0

31

d̄
0

32

d̄
0

36

d̄
0

33

2
666664

3
777775Drn

(38)

where

d̄
0

ij ¼ d̄ ij=�̄33; s̄0ij ¼ s̄ij � d̄3i d̄
0

3j (39)

Inverting equations ð38Þ1;2;3, the algebraic expressions are obtained for syn
;szn

; tyzn
in terms of the elements

of X:

syn
¼ p11ðn̄vn � unÞ=rþ n̄p12wn=rþ p14srn

þ p18Drn

szn
¼ p21ðn̄vn � unÞ=rþ n̄p22wn=rþ p24srn

þ p28Drn

tyzn
¼ p61ðn̄vn � unÞ=rþ n̄p62wn=rþ p64srn

þ p68Drn
(40)

with

pi1 ¼ �ŝi1; pi4 ¼ �ðŝi1s̄
0
13 þ ŝi2s̄023 þ ŝi6s̄

0
36Þ

pi2 ¼ �ŝi6; pi8 ¼ �ðŝi1d̄
0

31 þ ŝi2d̄
0

32 þ ŝi6d̄
0

36Þ

ŝ11 ŝ12 ŝ16

ŝ21 ŝ22 ŝ26

ŝ61 ŝ62 ŝ66

2
664

3
775 ¼

s̄011 s̄012 s̄016

s̄012 s̄022 s̄026

s̄016 s̄026 s̄066

2
664

3
775
�1

(41)

for i ¼ 1; 2; 6. Eqs. (30) and (31) are the algebraic equations for Dyn
;Dzn

in terms of the elements of X.
Substitution of syn

;szn
; tyzn

from Eq. (40), Dyn
from Eq. (30) and fn;r from Eq. (32) into Eqs. ð38Þ4, (27), (28),

(32)–(36) yields the following first-order homogeneous ODEs with variable coefficients which can be expressed
in matrix form as

X ;r ¼ ðA0 þ A1=rþ A2=r2ÞX (42)

The non-zero elements of matrices A0;A1;A2 are

A0ð1; 5Þ ¼ s̄45; A1ð3; 1Þ ¼ n̄ps
1; A2ð4; 1Þ ¼ n̄p11

A0ð1; 6Þ ¼ s̄55; A1ð3; 2Þ ¼ n̄ps
2; A2ð4; 2Þ ¼ n̄p12

A0ð2; 5Þ ¼ s̄44; A1ð3; 3Þ ¼ �ps
1; A2ð4; 3Þ ¼ �p11

A0ð2; 6Þ ¼ s̄45; A1ð4; 4Þ ¼ p14 � 1; A2ð5; 1Þ ¼ �n̄2p61

A0ð3; 4Þ ¼ ps
4 þ s̄033; A1ð4; 6Þ ¼ n̄; A2ð5; 2Þ ¼ �n̄2p62

A0ð3; 8Þ ¼ ps
8 þ d̄

0

33; A1ð4; 8Þ ¼ p18; A2ð5; 3Þ ¼ n̄p61

A0ð4; 3Þ ¼ �ro2; A1ð5; 4Þ ¼ �n̄p64; A2ð6; 1Þ ¼ �n̄2p11 (43)
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A0ð5; 2Þ ¼ �ro2; A1ð5; 5Þ ¼ �1; A2ð6; 2Þ ¼ �n̄2p12

A0ð6; 1Þ ¼ �ro2; A1ð5; 8Þ ¼ �n̄p68; A2ð6; 3Þ ¼ n̄p11

A0ð7; 4Þ ¼ pd
4 þ d̄

0

33 A1ð6; 4Þ ¼ �n̄p14; A1ð7; 3Þ ¼ �pd
1

A0ð7; 8Þ ¼ pd
8 � 1=�̄33 A1ð6; 6Þ ¼ �2; A1ð8; 5Þ ¼ n̄d̄14

A1ð1; 1Þ ¼ 1; A1ð6; 8Þ ¼ �n̄p18; A1ð8; 6Þ ¼ n̄d̄15

A1ð1; 3Þ ¼ �n̄; A1ð7; 1Þ ¼ n̄pd
1 ; A2ð8; 7Þ ¼ �n̄2�̄11

A1ð1; 7Þ ¼ �n̄d̄15; A1ð7; 2Þ ¼ n̄pd
2 ; A1ð8; 8Þ ¼ �1

A1ð2; 7Þ ¼ �n̄d̄14 (44)

where

ps
i ¼ s̄013p1i þ s̄023p2i þ s̄036p6i

pd
i ¼ d̄

0

31p1i þ d̄
0

32p2i þ d̄
0

36p6i (45)

The general solution of Eq. (42) is obtained using modified Frobenius method [17,18] wherein the solution is
expanded in terms of the product of an exponential function and a power series in the dimensionless thickness
coordinate z ð0pzp1Þ:

X ðzÞ ¼ elz
X1
i¼0

Ziz
i (46)

) X ;z ¼ elz
X1
i¼0

½lZi þ ði þ 1ÞZiþ1�z
i (47)

This method differs from the conventional Frobenius method [25] in which the solution is assumed as a
product of the radial coordinate raised to a power ðrlÞ and a power series in that coordinate. It can be readily
seen that in the modified method, one term solution in the power series ensures the exact solution of Eq. (42)
for the case of constant coefficients with values corresponding to z ¼ 0 (i.e. r ¼ R

ðkÞ
1 ). This is, however, not the

case for the conventional Frobenius and power series methods. Consequently, this modified method yields
much faster convergence compared to the latter methods. Also, the modified method has not led to multiple
roots for any of the numerical studies conducted earlier [17–19] for shells. Using ð15Þ2, the governing equation
(42) can be expressed as

ðsþ zÞ2X ;z ¼ ½R1A0ðsþ zÞ2=sþ A1ðsþ zÞ þ A2s=R1�X

) ðs2 þ 2sxþ x2ÞX ;z ¼ ½s
2Aþ ð2R1A0 þ A1Þzþ A0tz

2
�X (48)

A ¼ ½A0R1 þ A1 þ A2=R1�=s (49)

where s ¼ R1=t. Substituting the solution from Eqs. (46) and (47) into Eq. (48) yields

X1
i¼0

½flZi þ ði þ 1ÞZiþ1gðs
2 þ 2szþ z2Þ � fs2Aþ ð2R1A0 þ A1Þzþ A0tz

2
gZi�z

i
¼ 0

)
X1
i¼0

½s2ði þ 1ÞZiþ1 � s2fA� ðlþ 2i=sÞIgZi

� f2R1A0 þ A1 � ð2lsþ i � 1ÞIgZi�1 � ðtA0 � lIÞZi�2�z
i
¼ 0 (a)

where a term Zj is included only if jX0. In Eq. (a), setting the coefficients of z0 and of xi as zero for iX1 yields

s2Z1 � s2ðA� lIÞZ0 ¼ 0 (b)

and a recursive relation for Zi:

Ziþ1 ¼ ½d0ðl; iÞZi þ d1ðl; iÞZi�1 þ d2ðlÞZi�2�=ði þ 1Þ; iX1 (c)
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where

d0ðl; iÞ ¼ A� ðlþ 2i=sÞI

d1ðl; iÞ ¼ ½2R1A0 þ A1 � ð2lsþ i � 1ÞI �=s2

d2ðlÞ ¼ ðtA0 � lIÞ=s2 (50)

The indicial equation for l is obtained from Eq. (b) by choosing Z1 ¼ 0; which yields

AZ0 ¼ lZ0 (51)

Hence the exponent l and Z0 are the eigenvalue and eigenvector pair of 8� 8 real matrix A. Since A has eight
eigenpairs (lj ;Z

j
0), j ¼ 1; . . . ; 8; X is the sum of eight solutions of the form (46) with the exponential factor eljz

and coefficients Z
j
i for the power series for the jth solution. Z

j
0 is the normalized eigenvector and Z

j
1 ¼ 0. The

other coefficients of the series are obtained using Eq. (c) for l ¼ lj:

Z
j
iþ1 ¼ ½d0ðlj ; iÞZ

j
i þ d1ðlj ; iÞZ

j
i�1 þ d2ðljÞZ

j
i�2�=ði þ 1Þ; iX1 (52)

The eigenvalues of A are either real or occur in complex conjugate pairs. The solution for pair of eigenvalues
l1; l2 ¼ a� ib with complex eigenvector Z1

0 corresponding to l1 can be expressed in terms of two real
constants C1 and C2 as

X ðzÞ ¼ F 1ðzÞC1 þ F2ðzÞC2 (53)

F 1ðzÞ ¼ eaz cos bz
X1
i¼0

ReðZ1
i Þz

i
� sin bz

X1
i¼0

ImðZ1
i Þz

i

" #
(54)

F 2ðzÞ ¼ eaz sin bz
X1
i¼0

ReðZ1
i Þz

i
þ cos bz

X1
i¼0

ImðZ1
i Þz

i

" #
(55)

Re and Im indicate real and imaginary parts of a complex number. The solution for distinct real eigenvalue,
say l3 ¼ p with eigenvector Z3

0, in terms of real constant C3, is

X ðzÞ ¼ F3ðzÞC3; F3ðzÞ ¼ epz
X1
i¼0

Z3
i z

i

" #
(56)

The general solution X ðzÞ can be expressed in terms of real constants Cj as

X ðzÞ ¼
X8
j¼1

FjðzÞCj ¼ F ðzÞC (57)

where

F ðzÞ ¼ ½F1ðzÞ F2ðzÞ F3ðzÞ F4ðzÞ F5ðzÞ F 6ðzÞ F 7ðzÞ F 8ðzÞ�

C ¼ ½C1 C2 C3 C4 C5 C6 C7 C8�
T (58)

The functional form of FjðzÞ is given by Eqs. (54), (55) or ð56Þ2 as per the nature of lj. The infinite power series
in FjðzÞ are truncated to finite number of terms such that the contribution of the first neglected term is less
than a stipulated small number Z ð¼ 10�10Þ. For the kth layer, the values X�k of X at the top ðz ¼ 1Þ can be
reduced to the value Xþk�1 of X at the bottom ðz ¼ 0Þ as follows:

X ð0Þ ¼ F ð0ÞC; ) C ¼ ½F ð0Þ��1X ð0Þ

X ð1Þ ¼ F ð1ÞC ¼ F ð1Þ½F ð0Þ��1X ð0Þ

) X�k ¼ TkXþk�1 with Tk ¼ F ð1Þ½F ð0Þ��1 (59)

Tk is called the transfer matrix for the kth layer. Following the transfer matrix method detailed in Ref. [7], the
values X L of X at the top of the laminate are related to the values X 0 of X at the bottom of the laminate by
using the continuity conditions in Eqs. (19) and (20). Out of the 16 variables in X L and X 0, eight are
eliminated from the eight boundary conditions in Eqs. (17) and (18), yielding eight algebraic equation for the
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remaining eight variables. The undamped natural frequencies o ¼ on are obtained using the procedure of
Kapuria and Achary [7].

5. Numerical results

5.1. Validation

The results obtained from the present formulation are validated by comparing with results for natural
frequencies of an elastic cylindrical panel presented by Chen and Lee [21] using the layerwise method. A five
layered cylindrical panel with lay-up ½�15�=60�=90�=75�=� 45�� of stacking sequence from bottom to top,
having same thickness for all plies and same density ratio is considered for validation. The material properties
are considered as Y L=Y T ¼ 25, GLT=Y T ¼ 0:5, GTT=Y T ¼ :2, mLT ¼ mTT ¼ 0:25, where Y is Young’s
modulus, G the shear modulus, m Poisson’s ratio and subscripts L and T indicate, respectively, directions
parallel and perpendicular to the fibers. The span angle of the panel is taken to be c ¼ p=3. The lowest 10
dimensionless frequencies (o� ¼ oRi

ffiffiffiffiffiffiffiffiffiffiffiffi
r=Y T

p
) for two lower modes n ¼ 1 and 2 are compared in Table 1. It is

observed that the present results match exactly with those of Ref. [21].

5.2. Free vibration

Benchmark results are presented for piezoelectric hybrid shell panels of four configurations (a), (b), (c) and
(d) as shown in Fig. 2. Panel (a) is a single layer piezoelectric panel of made of PZT-5A. Panel (b) is a hybrid
angle-ply test panel which is highly inhomogeneous in material properties. Panels (c) and (d) are hybrid angle-
ply composite and sandwich panels, respectively. The properties [10] of materials of the laminas are
½ðY 1;Y 2;Y 3;G12;G23;G31Þ; n12; n13; n23� ¼
Material 1:
Table 1

Comparison o

bending.

n

1

2

[(6:9; 6:9; 6:9; 2:76; 2:76; 2:76)GPa, 0:25; 0:25; 0:25]

Material 2:
 [(224:25; 6:9; 6:9; 56:58; 1:38; 56:58)GPa, 0:25; 0:25; 0:25]
f frequency parameters o� of five layered simply supported elastic angle-ply composite cylindrical panel in cylindrical

Order S ¼ 4 S ¼ 20

Chen and Lee [21] Present Chen and Lee [21] Present

1 0.800913 0.8009137 0.297289 0.2972891
2 3.68538 3.685381 4.57717 4.577165
3 5.45687 5.456873 8.14466 8.144664
4 7.93727 7.937278 30.1375 30.13755
5 9.73254 9.732535 39.6732 39.67323
6 11.2964 11.29636 60.5671 60.56711
7 13.1383 13.13831 63.6877 63.68769
8 14.3726 14.37256 70.6553 70.65526
9 17.6276 17.62756 91.8882 91.88824

10 19.9383 19.93832 105.671 105.6706

1 2.17166 2.171660 1.20765 1.207655
2 6.46837 6.468361 8.92641 8.926406
3 7.89499 7.894998 15.0668 15.06679
4 9.75943 9.759445 34.5660 34.56596
5 11.7353 11.73526 40.6152 40.61517
6 13.4791 13.47908 61.3742 61.37415
7 14.6435 14.64350 64.5697 64.56972
8 18.6976 18.69753 70.9909 70.99092
9 19.7625 19.76246 92.4875 92.48745

10 22.9928 22.99279 106.133 106.1325
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Fig. 2. Configurations of hybrid cylindrical panels (a), (b), (c) and (d).
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Material 3:
 [(172:5; 6:9; 6:9; 3:45; 1:38; 3:45)GPa, 0:25; 0:25; 0:25]

Material 4:
 [(181:0; 10:3; 10:3; 7:17; 2:87; 7:17)GPa, 0:28; 0:28; 0:33]
Face:
 [(131:1; 6:9; 6:9; 3:088; 2:3322; 3:588)GPa, 0:32; 0:32; 0:49]

Core:
 [(0:2208; 0:2001; 2760; 16:56; 455:4; 545:1)MPa, 0:99; 3� 10�5; 3� 10�5]
PZT-5A:
 [(61:0; 61:0; 53:2; 22:6; 21:1; 21:1)GPa, 0:35; 0:38; 0:38], and ½ðd31; d32; d33; d15; d24Þ, ðZ11; Z22; Z33Þ� ¼
½ð�171;�171; 374; 584; 584Þ � 10�12 mV�1; ð1:53; 1:53; 1:5Þ � 10�8 Fm�1�. The density of materi-
als 1, 2, 3, 4 is 1578 kgm�3and of PZT-5A, face and core materials is 7600, 1000 and 70 kgm�3,
respectively.
The interface between elastic substrate and piezoelectric layer is electrically grounded. The inner surfaces of
panels (a) and (d) are at OC condition. In order to assess the effect of electric boundary conditions, both close
circuit (CC) and OC conditions are considered for the outer surface of the panels.

The natural frequencies on and the modal displacements are non-dimensionalized as

ōn ¼ onRS1ðr0=Y 0Þ
1=2; ðū; v̄; w̄Þ ¼ ðu; v;wÞ=maxðu; v;wÞ

where Y 0 ¼ 61:9GPa for panel (a), Y 0 ¼ 6:9GPa for panels (b), (d), and Y 0 ¼ 10:3GPa for panel (c);
r0 ¼ 7600 kgm�3 for panel (a), 1578 kgm�3 for panels (b), (c) and 1000 kgm�3 for panel (d). The expression
maxðu; v;wÞ denotes the largest value of u; v and w through the thickness for a given vibration mode, and
S1 ¼ S; 1; 1=S for thickness mode 1, modes 2, 3 and modes 4, 5, 6, 7, respectively. S is the mean radius to
thickness ratio (R=h). The dimensionless undamped natural frequencies of the simply supported cylindrical
panels of all four configurations (a), (b), (c) and (d) with span angle c ¼ 60� are presented in Table 2 under
OC condition for three values of S ¼ 5; 10; 20. For panel (c), the ply angle b is taken as 30�. The frequencies
are listed for lowest seven thickness modes for the spatial mode n ¼ 1 and only the flexural mode 1 for the
spatial modes n ¼ 2 and 3. Typical through-the-thickness distributions of modal displacements ū, v̄ and w̄ are
plotted in Fig. 3 for hybrid panel (d) under OC condition for the lowest seven thickness modes for spatial
mode n ¼ 1 and S ¼ 20. The mode shapes indicate that the first mode is a bending mode and the second and
third modes are extensional modes along axial and circumferential directions, respectively. The fourth and
fifth modes correspond to thickness shear modes distinguished by antisymmetric inplane displacements and
zero transverse displacement. The sixth mode corresponds to thickness stretching and the seventh one is a
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Table 2

Natural frequencies ōn of hybrid cylindrical panels under open circuit condition (OC).

n Mode c ¼ 60� c ¼ 120�

S Panel (a) Panel (b) Panel (c) Panel (d) Panel (d)

1 1 5 2.4313 4.6473 4.3318 2.4555 0.50119
10 2.5210 6.3075 5.3447 3.6897 0.61580
20 2.5456 7.1479 5.7485 4.5097 0.66016

2 5 3.6220 3.5165 4.2030 2.5294 1.2811
10 3.6709 3.9373 4.5811 2.5636 1.2833
20 3.6826 4.0608 4.6846 2.5655 1.2829

3 5 11.354 8.3583 7.0492 3.5877 2.6982
10 21.649 9.7064 8.1351 4.9072 2.8107
20 42.760 10.153 8.4833 4.9536 2.8258

4 5 3.5619 1.7263 1.7813 0.90641 0.55121
10 3.6318 1.3836 1.5217 0.54820 0.50063
20 3.6581 1.2992 1.4468 0.50024 0.48771

5 5 4.2267 2.5495 2.5108 1.0745 0.72913
10 4.0926 1.9991 1.9941 0.71341 0.58267
20 4.0502 1.7363 1.8320 0.58057 0.54289

6 5 5.6318 2.8180 2.8060 1.3084 1.2285
10 5.6201 2.6559 2.6794 1.1880 1.1861
20 5.6173 2.6442 2.6713 1.1776 1.1775

7 5 8.1005 3.0168 3.4291 5.0420 5.0393
10 8.0771 2.7286 3.3107 5.0367 5.0360
20 8.0712 2.6937 3.2850 5.0354 5.0352

2 1 5 9.6614 13.352 13.228 6.5164 2.4555
10 10.992 21.278 19.729 11.180 3.6897
20 11.449 28.780 24.304 16.813 4.5097

3 1 5 19.016 22.822 22.422 10.911 4.4450
10 23.800 37.747 36.728 18.860 7.3823
20 25.890 57.011 50.638 31.260 10.173
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higher-order thickness shear mode along circumferential direction. While the above thickness modes are found to
hold well for hybrid shells of all lay-ups for SX10, their order has been found to be different in some cases for S ¼ 5.
Similar results for frequencies for CC condition at the outer surface are presented in Table 3. As expected, the

natural frequencies for OC condition are higher than those for CC condition, which is due to increase in effective
stiffness caused by direct piezoelectric effect in the former case. It is revealed that while the difference between the OC
and the CC flexural frequencies decrease with the increase in S for the single layer piezoelectric panel (a), it increases
with S for all hybrid panels (b), (c) and (d). Consistent with this, for higher flexural modes, this difference is smaller
for piezoelectric panel (a) and larger for the hybrid panels. The natural frequencies for a deeper shell panel (d) with
span angle c ¼ 120� are also listed in Table 2. Being more flexible, its frequencies are lesser than those of the shell
with c ¼ 60�, for thickness modes 1–5. Frequencies of thickness modes 6 and 7 are not much affected by the span
angle. Fig. 4 depicts the effect of ply-angle on natural frequencies of the first three flexural modes of hybrid angle-ply
composite panel (c) for S ¼ 5 and 10. As expected, the natural frequencies decrease with the increase in ply-angle.

5.3. Forced vibration

The steady-state harmonic response is obtained for the following two load cases:
(1)
 Pressure p2 ¼ �p0 sinðpy=cÞ on the outer surface with electric boundary condition (OC).

(2)
 Potential f2 ¼ f0 sinðpy=cÞ applied to the outer surface with electric boundary condition (CC).
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Fig. 3. Through-thickness distribution of ū, v̄ and w̄ for sandwich panel (d) for first seven thickness modes.
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The results for these two load cases are non-dimensionalized as:
(1)
 ū ¼ 10uY 0=hS4p0; s̄y ¼ sy=S2p0; t̄ry ¼ try=Sp0,

(2)
 ū ¼ u=S2d0f0; s̄y ¼ syh=Y 0d0f0; t̄ry ¼ trySh=Y 0d0f0,
where d0 ¼ 374:0� 10�12 CN�1 for all four panels and Y 0 is as given in Section 5.2. The damping parameter c̄

is non-dimensionalized as c̄ ¼ cdS=2r0Ro1.
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Table 3

Natural frequencies ōn of hybrid cylindrical panels under close circuit condition (CC).

n Mode S Panel (a) Panel (b) Panel (c) Panel (d)

1 1 5 2.4183 4.6101 4.2785 2.4334

10 2.5171 6.2297 5.2605 3.6240

20 2.5446 7.0405 5.6483 4.3937

2 5 3.5731 3.5025 4.2005 2.5294

10 3.6597 3.9275 4.5810 2.5636

20 3.6800 4.0530 4.6846 2.5655

3 5 10.029 8.2986 6.9450 3.5876

10 18.771 9.6100 8.0588 4.7474

20 36.897 10.075 8.4192 4.8185

4 5 3.5585 1.7124 1.7808 0.86802

10 3.6311 1.3834 1.5217 0.54820

20 3.6580 1.2990 1.4468 0.50024

5 5 4.2101 2.5495 2.5102 1.0728

10 4.0877 1.9973 1.9925 0.70940

20 4.0489 1.7356 1.8314 0.57856

6 5 5.5295 2.8166 2.8049 1.3044

10 5.5092 2.6559 2.6793 1.1876

20 5.5042 2.6442 2.6709 1.1775

7 5 8.0949 3.0150 3.4290 5.0418

10 8.0754 2.7285 3.3107 5.0366

20 8.0708 2.6936 3.2850 5.0354

2 1 5 9.5517 13.283 13.107 6.4798

10 10.936 21.089 19.465 11.066

20 11.431 28.409 23.907 16.498

3 1 5 18.769 22.732 22.261 10.855

10 23.600 37.482 36.304 18.719

20 25.808 56.390 49.872 30.830

Fig. 4. Effect of ply-angle on flexural natural frequencies of hybrid angle-ply composite panel (c) under open circuit condition (OC).
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The dimensionless values of amplitude of mid-surface deflection ūm at the center of the panels and its phase
lag k� for harmonic pressure load of case (1) are listed in Table 4 for two values of forcing frequency ratio
o=o1 ¼ 0:7; 1 for S ¼ 5; 10 and 20. Similar results for the potential load case (2) are presented in Table 5.
Results are presented for both undamped and damped cases with c̄ ¼ 0:1. The phase lag is 90� for pressure
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load case for o=o1 ¼ 1 and close to 90� for the potential load case. The amplitude ūm and phase lag k� of the
mid-surface deflection at the center of panel (d) with S ¼ 10 are plotted in Fig. 5 as a function of o=o1 for
both load cases (1) and (2) for undamped (c̄ ¼ 0) and damped (c̄ ¼ 0:1) cases. The pattern of these response
curves is very much similar to the case of a single degree of freedom system. The effect of ply-angle on central
deflection is depicted in Figs. 6 and 7 for load cases (1) and (2), respectively, for hybrid angle-ply composite
panel (c) for o=o1 ¼ 0:7, c̄ ¼ 0:1 and S ¼ 5; 10. The steady-state amplitude of deflection increases with the
increase in ply-angle in both load cases. The increase is more for the pressure load case than for the potential
load.
Table 4

Amplitude and phase of central deflection of panels under harmonic pressure load.

Panel S o
o1
¼ 0:7

o
o1
¼ 1

c̄ ¼ 0 c̄ ¼ 0.1 c̄ ¼ 0:1

ūm ūm k� ūm k�

a 5 0.80486 0.77847 14.71 2.1479 90.00

10 2.8994 2.8082 14.41 7.9002 90.00

20 11.149 10.810 14.18 30.896 90.00

b 5 0.63701 0.62569 10.82 2.3447 90.00

10 0.33614 0.33045 10.56 1.2631 90.00

20 0.25663 0.25243 10.39 0.97987 90.00

c 5 0.73808 0.72487 10.85 2.7054 90.00

10 0.46959 0.46159 10.59 1.7591 90.00

20 0.39717 0.39064 10.40 1.5149 90.00

d 5 1.8384 1.8169 8.78 8.3655 90.00

10 0.78399 0.77544 8.47 3.6875 90.00

20 0.51445 0.50903 8.32 2.4612 90.00

Table 5

Amplitude and phase of central deflection of panels under harmonic potential load.

Panel S o
o1
¼ 0:7

o
o1
¼ 1

c̄ ¼ 0 c̄ ¼ 0.1 c̄ ¼ 0:1

ūm ūm k� ūm k�

a 5 3.5336 3.4178 15.69 9.6472 91.34

10 1.9424 1.8813 14.65 5.3621 90.34

20 0.99631 0.96596 14.24 2.7800 90.09

b 5 0.64458 0.63314 10.44 2.3101 89.45

10 0.57120 0.56153 10.47 2.1222 89.86

20 0.54769 0.53870 10.37 2.0799 89.96

c 5 0.70113 0.68862 10.51 2.5260 89.52

10 0.62444 0.61381 10.50 2.3202 89.88

20 0.60096 0.59108 10.38 2.2832 89.97

d 5 1.2034 1.1893 8.57 5.2879 89.68

10 1.0911 1.0791 8.43 5.0455 89.93

20 1.0598 1.0486 8.32 5.0251 89.98
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Fig. 5. Amplitude ūm and phase k� for hybrid sandwich panel (d) under load cases (1) and (2).

Fig. 6. Effect of ply-angle on central deflection amplitude of hybrid panel (c) for harmonic pressure load.

Fig. 7. Effect of ply-angle on central deflection amplitude of hybrid panel (c) for harmonic potential load.

S. Kapuria et al. / Journal of Sound and Vibration 324 (2009) 832–849846
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The through-the-thickness distributions of dimensionless amplitude of deflection ū, inplane stress s̄y and
transverse stress t̄ry are shown in Figs. 8–10 for panels (b), (c) and (d) for both load cases (1) and (2)
considering o=o1 ¼ 0:7 and c̄ ¼ 0:1. It is observed that the distribution of ū across the thickness is
nonuniform especially for the potential load case (2). The distribution of the inplane stress s̄y becomes
nonlinear across some layers for thick panels with S ¼ 5.
Fig. 8. Distributions of steady-state amplitudes of ū, s̄y and t̄ry for hybrid test panel (b) under harmonic pressure and potential loading.

Fig. 9. Distributions of steady-state amplitudes of ū, s̄y and t̄ry for hybrid composite panel (c) under harmonic pressure and potential

loading.
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Fig. 10. Distributions of steady-state amplitudes of ū, s̄y and t̄ry for hybrid sandwich panel (d) under harmonic pressure and potential

loading.
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6. Conclusions

An exact 2D piezoelasticity solution for free vibration and damped harmonic forced vibration response has
been presented for simply supported hybrid piezoelectric angle-ply shell panels. Benchmark numerical results
are presented for the natural frequencies and steady-state harmonic response of a piezoelectric panel, and
hybrid angle-ply test, composite and sandwich panels. These results presented in tabular form will serve as
useful benchmark against which the accuracy of 1D theories and approximate 2D solutions of hybrid angle-
ply panels can be assessed. The change in the difference between OC and CC natural frequencies with
thickness parameter and flexural mode number follows different trends for piezoelectric panels and hybrid
panels. The increase in steady-state deflection amplitude with ply-angle is larger for pressure load than for the
potential load.
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